

Indigestion Remedies

Compare two unknown indigestion remedies to determine which is more effective in neutralising "stomach acid".

Method

- 1. Place 10ml of hydrochloric acid in a beaker and add a few drops of universal indicator solution (t should turn red). Place the beaker on a white tile so that the colour can be seen clearly.
- 2. Fill a syringe with remedy A. Slowly add this to the beaker. While adding, gently swirl the beaker to ensure the two solutions are mixed. Continue slowly adding the solution until the indicator so a neutral solution (green).
- 3. Record the amount of remedy that was added to the solution to neutralise it.
- 4. Repeat this process for remedy B.

Remedy	Volume added to neutralise (ml)	
	Trial 1	Trail 2
A		
В		

Equipment

- "stomach acid"
 (0.2M hydrochloric acid)
- Remedy A
- Remedy B
- Graduated pipettes / syringes
- 250ml beaker
- White tile
- Universal indicator solution

Questions

1. Which remedy is more effective at neutralising stomach acid? Explain your answer.

2. Calcium carbonate tablets are normally used as an indigestion remedy. This reactions produces calcium chloride, water and carbon dioxide. Write a word equation for this reaction.

3. Suggest why calcium carbonate may be a better than an alkali to neutralise excess stomach acid.

Balancing Chemical Equations

Balance the equations below:

1. __HCI + __NaOH
$$\rightarrow$$
 __NaCl + __H₂O
2. __H₂SO₄ + __KOH \rightarrow __K₂SO₄ + __H₂O
3. __HNO₃ + __NH₃ \rightarrow __NH₄NO₃ + __H₂O
4. __H₃PO₄ + __Ca(OH)₂ \rightarrow __Ca₃ (PO₄)₂ + __H₂O
5. __HCI + __NH₄OH \rightarrow __NH₄Cl + __H₂O
6. __H₂SO₄ + __Mg(OH)₂ \rightarrow __MgSO₄ + __H₂O
7. __HNO₃ + __LiOH \rightarrow __LiNO₃ + __H₂O
8. __H₃PO₄ + __AI(OH)₃ \rightarrow __AIPO₄ + __H₂O
9. __CH₃COOH + __KOH \rightarrow __K(CH₃COO) + __H₂O

10. $C_3H_5O(COOH)_3 + Ca(OH)_2 \rightarrow Ca(C_3H_5O(COO)_3)_2 + H_2O$

If something is in brackets, everything in the bracket is multiplied by the small number. E.g. $Na(OH)_2$ has 1 sodium atom (Na), 2 oxygen (O) atoms and 2 hydrogen (H) atoms.

Acids	Alkalis
HCI – Hydrochloric acid H_2SO_4 – sulphuric acid HNO ₃ – nitric acid $H_3 PO_4$ – phosphoric acid CH ₃ OOH – ethanoic acid (vinegar) $C_3H_5O(COOH)_3$ - citric acid	LiOH – lithium hydroxide NaOH – Sodium hydroxide KOH – potassium hydroxide NH ₃ – ammonia NH ₄ OH – ammonium hydroxide Ca(OH) ₂ – calcium hydroxide Mg(OH) ₂ – magnesium hydroxide Al(OH) ₃ – aluminium hydroxide

Mission Assignment: Outline the neutralisation reaction			
Balancing Chemical Equations - Top Tip #1			
The elements are either written as a single upper-case letter or an upper-case letter followed by a lower-case letter.			
C – carbon Na – sodium			
Top Tip #2	Top Tip #3		
Two upper case letters next to each other indicate that there are two different elements present.	The subscript number after an element tells us how many atoms of that element are in the molecule. If there is no number, then there is just one atom of that element		
Co – cobalt	P ₂ O ₅		
CO – carbon & oxygen (carbon monoxide)	Here there are 2 phosphorus atoms and 5 oxygen atoms in 1 molecule.		
Top Tip #4	Top Tip #5		
The large number in front shows how many molecules we have in total. If there is no number, then there is just one molecule.	The objective of balancing equations is to have the same number of atoms either side of the arrow.		
2H ₂ O	$2Na + Cl_2 \rightarrow 2NaCl$		
2 molecules of water (H_2O). Which is 4 hydrogen (H) and 2 Oxygen (O) atoms in total	On the left there are 2 sodium (Na) and 2 chlorine (Cl) atoms. On the right there are 2 sodium (Na) and 2 chlorine (Cl) atoms		
When we balance equations, we only change the number in front, never the small number as this changes the chemical.			
To balance the equation Only add numbers in front Do not change or add subscript numbers	$H_2 + O_2 \rightarrow H_2O$ $2H_2 + O_2 \rightarrow 2H_2O$ $H_2 + O_2 \rightarrow H_2O_2^*$		
*Here water was changed into corrosive hydrogen peroxide!			
Why do scientist use chemical equations? What law of chemistry does a balanced equation demonstrate?			

Balancing Chemical Equations

- 1. HCl + NaOH \rightarrow NaCl + H₂O
- 2. $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$
- 3. $HNO_3 + NH_3 \rightarrow NH_4NO_3 + H_2O$
- 4. $2H_3 PO_4 + 3Ca(OH)_2 \rightarrow Ca_3 (PO_4)_2 + 6H_2O$
- 5. $HCI + NH_4OH \rightarrow NH_4CI + H_2O$
- 6. $H_2SO_4 + Mg(OH)_2 \rightarrow MgSO_4 + H_2O$
- 7. $HNO_3 + LiOH \rightarrow LiNO_3 + H_2O$
- 8. $H_3 PO_4 + AI(OH)_3 \rightarrow AIPO_4 + 3H_2O$
- 9. $CH_3COOH + KOH \rightarrow K(CH_3COO) + H_2O$
- 10. $2C_3H_5O(COOH)_3 + 3Ca(OH)_2 \rightarrow Ca_3(C_3H_5O(COO)_3)_2 + 3H_2O$