Mission Assignment: Explore Specific Heat Capacity – Required Practical

MA Code: KS4-18-08

Specific Heat Capacity – Required Practical

Planning:

- 1. Consider the method
 - What are we investigating?
 - How might we find the answers?
- 2. Make a risk assessment:-
 - What are the hazards?
 - What measures will you take to manage risk?

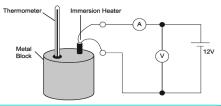
3. Variables:-

- What controls do we need?
- What are the dependent variables?
- What are the independent variables?
- 4. Determine for accuracy and for error:-
 - What is the calibration of the thermometer?
 - What is the resolution of the thermometer?
 - What is the time interval between reading the data?
 - What is the range of energy (work done)?

Calculate:

Use your data table to calculate SHC:

⊿E


_	_		_
m	X	ΛA	

= C

Time (s)	Potential Difference (V)	Current (A)	Energy Transferred (J)	Temperature (°C)
0				
60				
120				
180				
240				
300				
360				
420				
480				
540				
600				

Objective:

To determine the specific heat capacity of three different metals.

m X c X

Δθ

Equation:

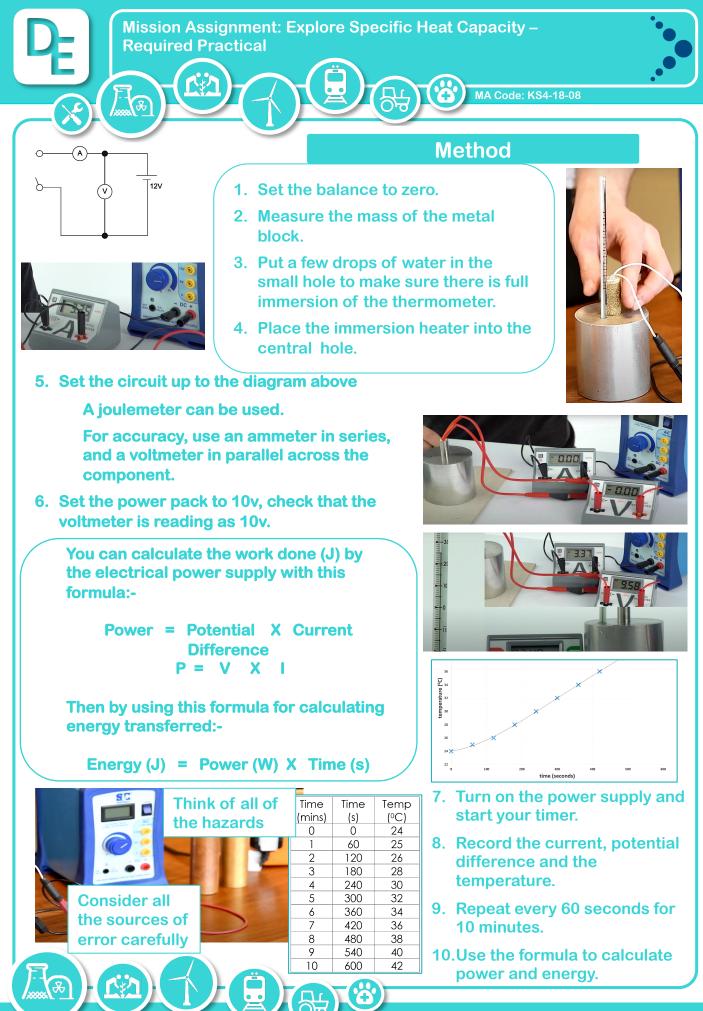
- **∆E Change in energy (J)**
- M Mass (kg)

OR

C – Specific Heat Capacity (J/kg°C)

 $\Delta \theta$ – Change in temperature (°C)

Rearrange the equation


Use a graph to calculate SHC:

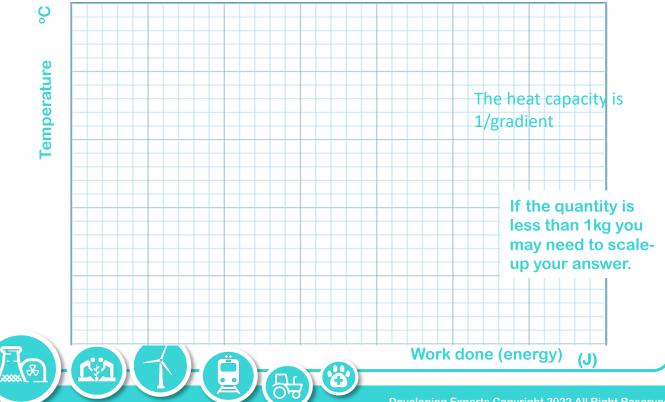
Draw a graph and plot the energy transferred on the *x* axis, and temperature on the *y* axis.

Plot your data. Draw a line of best fit. Determine the gradient $-y \div x$

Use this formula to calculate SHC

Developing Experts Copyright 2022 All Right Reserved

Specific Heat Capacity of a m block.
Equation
Rearrange the
formula to find SHC. What is th SI unit for SHC?


Mission Assignment: Explore Specific Heat Capacity -**Required Practical** H) MA Code: KS4-18-08 Jan & Xe **Data Analysis** Calculate the SHC to 3 sig. fig. Energy **Potential Temperature (°C)** Current (A) Transferred (J) Time (s) **Difference** (V) (IXVXtime) 0 60 120 180 240 300 360

420

480

540

600

